
Pikazard: I Choose You!

Abstract

Procedural Content Generation (PCG) is used for creat-
ing content for games. Useful content is novel, follows
existing game aesthetics, and is representative of game
mechanics. We develop a creative system that procedu-
rally generates Pokemon from existing Pokemon assets.
Novelty is handled indirectly by our system while its
main design is oriented around creating Pokemon that
reflect a given input of traits and uses heuristics to fol-
low Pokemon aesthetics. A survey of how well the gen-
erated Pokemon represent the given input is evaluated.
The system shows potential with a lot of room for im-
provement.

Introduction
Procedural content generation (PCG) has been leveraged by
game studios for producing game content at the industry
level. PCG has been applied in several ways at varying
scales. As summarized by (Wikipedia contributors 2022),
PCG has been used for music, weapons, creatures, and most
common on the list, 2D and 3D world terrains. This list con-
sists of only games that leverage PCG as a dynamic aspect
of the game, meaning content generation is done at “run-
time”. Games where PCG is used only in development, to
aid asset creation, are not included, making the list a lower
bound on the presence of PCG influence on games. For
PCG to be helpful the content generation can be guided to
give meaningful results. Meaningful results ultimately hinge
on the target experience the game is aiming to provide the
player. To be more concrete, generated content needs to fit
within the asset constraints of the game, such as aesthetics
and themes, game difficulty balancing, and functionality re-
quirements yet provide novelty within those constraints.

Content created that does not follow the existing style or
is too “extreme” in variance will appear out of place, de-
grading the experience, but generated content that replicates
(or varies very little from) existing assets does not provide
value for a unique player experience nor offer a developer
inspiration. In other words, the desired target is the peak
of the wundt curve (Berlyne 1973), a ’not too much not too
little’ amount of novelty. In the case of our system, more
specifically, a creature that differs from existing Pokemon
yet would still be recognized as a Pokemon is the aspired
result for novelty.

PCG additionally needs to account for “sub text” of the
content it is creating. Well designed assets effectively com-
municate value, utility, functionality, and even game state
to players. A generated environment may need to incorpo-
rate a visual for platforms that damage the player in order
to differentiate from platforms that are neutral. Music that
is procedurally generated can take into account and com-
municate the game state; playing pleasant music based on
positive progress or alter to a dissonant tone in the case the
players vital resources are nearing empty. A generated gun
that has a longer effective range and accuracy could visually
be given a longer barrel whereas a more mobile automatic
gun would have a smaller stock and a bigger magazine. An
asset can be considered better than another if it more clearly
communicates to players relevant game information.

Pokemon Generation

Our work is to build a creative system which procedurally
generates novel Pokemon that follow implicit rules relating
a Pokemon’s traits, strengths, and weaknesses. The weapon
example, in the previous paragraph, is most similar to the
role which Pokemon have in their game mechanic. Pokemon
have “stats”. From Bulbapedia, “A stat is any of certain nu-
merical values pertaining to each Pokemon. The Pokemon
stats are used in battles. This is short for statistic; in some
cases, it has also been named ability, rating, effect, or pa-
rameter (Bulbapedia contributors 2022a)”. Each Pokemon
has 6 permanent stats which we will continue to refer to as
stats in this paper. Every Pokemon has one or more Types.
A Type is a set of properties applied to a Pokemon and its
moves, affecting their performance in battle, “the Types are
based on the concept of classical elements in popular culture
(Bulbapedia contributors 2022b)”. See Figure 1 for exam-
ples of Pokemon with their stats and Figure 2 for a list of all
Pokemon Types.

For PCG to create novel and ability representative Poke-
mon we leverage Pokemon image assets, Type, stats, and
other data from existing Pokemon to form new ones. As
such we stay within the domain of existing Pokemon and
the system navigates within that context; presumably, able
to follow the implicit trends fostered by the original Poke-
mon creators.



Figure 1: Three example Pokemon with there respective stats (Bulbapedia contributors 2022c)

Figure 2: List of all Pokemon Types. (Bulbapedia contribu-
tors 2022b)

Approach

To accomplish our goal of creating a system that is capa-
ble of procedurally generating Pokemon, we have designed
a ‘nearest neighbor’ algorithm with two levels of sampling
complication. Our system is able to find the relevant sam-
pling pool using the user-supplied Pokemon Type and select
body parts from the most similar Pokemon, using stats as
the metric for similarity, to the desired Pokemon. This rel-
evant sampling pool will be expanded on in a later section,
but serves as an additional layer of relationships between
Pokemon that can be used for selecting nearest neighbors.

Pokemon Dataset
In order for our generated Pokemon to have a degree of va-
riety, we needed a large dataset of Pokemon parts for our
system to choose from. Doing this ensures that the same
body parts don’t get selected too often, which risks visually
stagnating the generated Pokemon.

There are currently eight generations of Pokemon and
nearly 900 unique Pokemon in total. We chose to limit our-
selves to only the first three generations, or 386 Pokemon,
due to the fact that the sprites for the first three genera-
tions were of a low enough resolution that pasting together
pieces of different Pokemon could still look somewhat nat-
ural. Using more high resolution sprites would have poten-
tially yielded Pokemon that had very obvious ‘seams’ be-
tween body parts. This would have detracted from the re-
sulting Pokemon image, as we are aiming for domain com-
petence.

Each of the 386 Pokemon sprites and data were pulled
from the PokeAPI Python library. After the full sprites had
been collected, we went through each sprite and isolated and
saved each of the Pokemon’s legs, arms, heads, tails, and
bodies (see Figure 3). With this done, we next needed to
crop each body part’s image (except for the Pokemon’s bod-
ies themselves) from their original 64x64 dimensions to the
dimensions of the respective body part. In order to do this,
we used the Python library CV2 to apply a thresholding op-
eration to the isolated body parts and to find the resulting
bounding box, then used the coordinates of that bounding
box to extract the cropped body part, isolating it from the
rest of the 64x64 image. An example of this operation is
shown in Figure 4.

This needed to be done in order for the pasting of body
parts onto a Pokemon body to work properly, as each body
part’s image dimensions needed to be centered to itself in
order to be pasted into the correct location.

The final piece of preparation that needed to be completed
before our system could function was to create body tem-
plates for the system to paste Pokemon body parts onto. In
Pokemon, there are 14 unique body shapes. These include
‘upright’, ‘quadruped’, ‘ball’, ‘tentacles’, and more. The
Pokemon’s body shape dictates what body parts that Poke-



mon’s body has attached to it, and it also dictates what body
parts it contributes to the overall dataset.

In order for our system to paste the isolated Pokemon
body parts (head, legs, arms, etc.) onto the isolated Poke-
mon body in a cohesive manner, it needs ‘anchor points’, or
(x,y) coordinates that tell the system where to put the arms,
legs, head, etc. These anchor points must be generated man-
ually for each Pokemon body that we wish to include in our
system’s sampling. It was for this reason, among others,
that we opted to include only two body shapes for our sys-
tem to generate: ‘upright’, and ‘quadruped’. Another reason
we narrowed it down to these two body shapes was because
these two body shapes occur the most commonly of the 14
body shapes in the first three generations of Pokemon. This
gave us the most examples to select the Pokemon whose
bodies best lend themselves to being isolated and having
other Pokemon parts pasted to them. For each of the two
body types we used, we selected the two or three Pokemon
whose sprites best fit this description. We took their iso-
lated bodies and manually found the coordinates for where
the head, arms, legs, and tails should be pasted. Our system
uses these coordinates to attach the isolated body parts to the
appropriate body.

K-Nearest Neighbors

K-nearest neighbors (KNN) is a method to classify an unla-
beled data point in n-dimensional space. By calculating the
distance, using a chosen distance metric, of the unlabeled
data point with the labeled data, a ranking of data points
is made by order of least distance. Then, from the highest k
ranking points, the unlabeled point’s class is estimated as the
most common class of the k-nearest points. For determining
shape of the Pokemon we employ KNN, where the shape is
the class we are determining for our unlabeled input data,
and we find the distances from the subset of the data that has
the same Pokemon Type as given in the input. We mention
that currently our system only supports the quadruped and
upright body shapes because we still need to label (x,y) coor-
dinates for anchor points of the necessary body attachments.
When KNN classifies a shape that our system does not yet
support, the chosen shape defaults to upright. For the dis-
tance metric we use the Euclidean distance of all the numer-
ical Pokemon battle related dimensions, applied as shown in
equation 1.

Figure 3: A Pokemon being separated into its base members

Figure 4: A Pokemon arm asset being reduced from 64x64
dimensions to the threshold dimensions

dist(x, t) =

vuuuuuuuuut

(HPx �HPt)
2 + (Attx �Attt)

2

+(Defx �Deft)
2

+(Sp.Attx � Sp.Attt)
2

+(Sp.Defx � Sp.Deft)
2

+(Speedx � Speedt)
2

(1)

Where x is the instance from the data set and t is the target
input to be classified. After the shape is chosen the system
looks through the Pokemon we have templates for in that
shape and chooses the one that is closest to the target input
using the Euclidean distance in equation 1. Then the next
steps are to iterate through each of the body parts required
by the selected template.

Egg groups
In the game of Pokemon there exists a game mechanic of
breeding. With this mechanic, a player can supply two dif-
ferent (one male, one female) Pokemon which may produce
an egg, that will later hatch into the provided female Poke-
mon but can inherit abilities of the father. For breeding to
have a chance of successfully producing an egg, it is re-
quired that the breeding Pokemon be of the same egg group
(Bulbapedia contributors 2022d). Egg groups are given to
Pokemon based on their biological traits, or in other words,
physical appearance. For example, the Water 1 egg group

(a) Upright Pokemon Template

(b) Quadruped Pokemon Template

Figure 5: Example templates: The body asset is taken and
the appropriate (x,y) coordinates (marked with blue circles)
are chosen as anchor points for the necessary body parts of
the particular body shape.



Figure 6: Egg groups (Bulbapedia contributors 2022e).

comprises of Pokemon amphibious in nature, the Water 2
egg group Pokemon are piscine like, and Pokemon in Wa-
ter 3 egg group resemble aquatic invertebrates (Bulbapedia
contributors 2022e). Like Type, a Pokemon may belong to
1 or 2 egg groups.

We leverage these egg groups to add diversity in a con-
trolled way. First we iterate through all of the Pokemon of a
given Type, keeping a tally of each egg group that appears.
This results with a distribution of egg groups as shown by the
example for Fire Type in Figure 7. With the relevant distri-
bution, for each of the necessary body part sets (arms, head,
etc.), we sample the distribution getting an egg group. Then,
for each egg group we get the subset of Pokemon belonging
to the particular egg group and find the closest one to the tar-
get using the Euclidean distance metric (equation 1), giving
us all the parts to assemble our new Pokemon (see Figure
8). This manner of choosing Pokemon parts stays within ex-
isting Pokemon biology Type patterns (e.g. No Fire Types
with Fish parts), being weighted towards the more common
egg group, but still allowing for a mixing of body parts from
different egg groups.

Pasting Pokemon
With the body template as a base, body parts are pasted onto
the template following an order that gives a natural layering
in the event that there is some overlap of the collaged as-
sets. One instance where this has a large influence on the
coherence of the Pokemon is with the head, which is always
appended to the template last. An additional challenge of
placing the body parts is that body parts vary in size and
shape. To deal with this, we have generally applied heuris-
tics for placing each of the body parts with respect to the
templates’ anchor points.

Results and Analysis
We wished to evaluate our system’s ability to generate Poke-
mon that well represent user-provided descriptive stats. To
accomplish this evaluation, we conducted a survey that

Figure 7: Fire Type Egg Group Distribution. Note that there
is no Fairy, Flying, Water 1, Water 2, Water 3, Mineral, Bug,
Plant, or Ditto.

showed participants five different Pokemon that were gen-
erated by our system and the descriptive stats that our sys-
tem used to generate them (health, attack, defense, special
attack, special defense, speed, and Type). The participants
were asked to rate on a scale of 1 to 10 how well they be-
lieved that the stats described or represented the generated
Pokemon. They were also asked to rate their familiarity with
Pokemon creatures on a scale of 1 to 10. This was asked to
give some context to individual responses.

The Pokemon images that participants were shown in the
survey are given in Figure 9. Three images were shown
for each Pokemon. The first is a multi-colored image that
shows each piece pasted onto the body without any alter-
ations made. The second is a grayscale version of this image.
The grayscale image makes it harder to tell where the seams
are between body parts and the underlying body, making for
an image that feels less stitched together and more cohesive.

Figure 8: Example showing the nearest Pokemon of each
group composing the newly assembled Pokemon.



Figure 9: Pokemon Images used in Survey in ascending or-
der (e.g. top row is Pokemon 1).

The third is a tinted version of this grayscale image. The
color of tint applied corresponds to the Type that the gen-
erated Pokemon has been designated as by the user’s input.
We have pre-selected colors for each Pokemon Type that we
feel best represent that Type. For example, a grassy green
for Grass Type Pokemon, and a soft blue for Water Type
Pokemon. The tinted image is not meant to be especially
informative for the participant taking the survey, it is mostly
meant to emphasize what Type the Pokemon is.

Our survey was distributed through the use of a Google
Form. We used a combination of convenience and snowball
sampling to reach as many people in our respective spheres
as possible. A total of 27 responses were received. The
average familiarity with Pokemon creatures was 5.413, with
a median familiarity of 5. The average ratings received for
each of the five generated Pokemon the participants were
shown is given in Figure 10

These results show that the participants considered Poke-
mon 3 and Pokemon 4 to be the best of the five Pokemon at
representing their accompanying stats, with Pokemon 2 be-
ing considered the worst. We believe that one potential rea-

Figure 10: Survey results showing average ratings for each
Pokemon in the survey.

son that Pokemon 3 and Pokemon 4 finished first is that they
have pieces that fit very well with their bodies, so aesthet-
ically they look more natural, which could be giving their
ratings a boost, even without looking at their stats. With
consideration to their stats, however, we believe that the rea-
son that Pokemon 3 finished highly was because it had very
balanced and middling stats for the most part. It also had
no dominant color among its selected body parts that would
suggest a Type other than its intended Type of Normal. We
believe that Pokemon 4 received high ratings for a similar
reason, that its body parts are very suggestive of a Water
Type Pokemon, which was the intended Type for that Poke-
mon.

In addition, the reason that we think Pokemon 2 finished
in last place among the ratings was because of its Flying
Type. In our dataset, almost all Flying Pokemon had wings
of some sort, or otherwise resembled a creature of the air.
Our Flying Type generated Pokemon had no such features.
Pokemon 2 also had the least cohesion among its body parts
when compared to the other Pokemon. Its arms and legs are
both hovering away from the body. This lack of cohesion,
along with any features that could distinguish it as a Flying
Type Pokemon, are the reasons that we believe caused it to
finish last in the ratings.

One weakness that we have found in our survey is that it
seems that adherence to the intended Type of the generated
Pokemon held more weight in the participants’ ratings than
the numeric stats. In the future a survey could potentially be
conducted that does not reveal the intended Type of the gen-
erated Pokemon as a way to prevent this. However, despite
this, we consider this survey’s results to be confirmation that
our system is capable of generating Pokemon that well rep-
resent the descriptive stats that were used to generate them.

Another weakness of our survey is that we hand-selected
the five Pokemon that were shown to the participants. They
were selected based on how coherent their images were,
meaning all of their body parts are connected and look like
they fit. In other words, they represent some of the best look-
ing Pokemon that our system is capable of generating. This
is a weakness because it means that the survey is only eval-
uating our system under optimal conditions. If we wanted
to evaluate our system holistally we would need to include
the generated Pokemon that are not as cohesive. However,
we still feel that these survey results are valuable and that
reasonable conclusions can be drawn from them.

Common Errors
Our system, while effective at generating Pokemon, is ca-
pable of producing poor results. Some of the common flaws



(a) Floating limbs (b) Small legs, awkward arms

(c) Head too big for body,
floating leg

(d) Head crop doesn’t lend itself for
a natural mount (e) Floating head and tail

Figure 11: Generated Pokemon with Issues

that appear in the generated Pokemon include body parts that
are not attached convincingly to the body, with white space
appearing between the piece and body.

Another flaw that appears often is body parts being either
being too small or too large for the body to which they are
attached.

We also discovered an interesting flaw in the generation
of Bug Type Pokemon. When generating a Bug Type Poke-
mon, there is an extreme lack of variety among the results.
This happens because of our egg group sampling method.
In our dataset, there exists little to no overlap between Bug
Type Pokemon and other Types of Pokemon in the same egg
group. This means that when a Bug Type Pokemon is gen-
erated, it is choosing from a very small sampling pool of
potential Pokemon parts. This is what causes the lack of
variety among generated Bug Type Pokemon.

Finally, a common flaw that we noticed occurs in our sys-
tem when the majority of the user-supplied stats are maxi-
mized or minimized, meaning most or all of them are at ei-
ther extreme. Doing this biases the system towards a select
few Pokemon that have stats near these extremes, a direct
result of the reduced number of nearby Pokemon due to the
extreme stats. We achieved our best results with stats that
lied around the middle of the ranges for each stat.

All of these errors are a result of the quality and size of
our dataset. Improvements such as the ability to scale body
parts up or down to match the size of the body they are being
attached to, or an improved method of attaching body parts
to a body to eliminate white space would fix some of these
issues. A larger dataset would add more data to the smaller
sampling pools that we have encountered. With a larger and
improved dataset, these errors would be mitigated or elimi-
nated completely.

Contributions and Future Work
It is our belief that, per Jordanous’s “key components of cre-
ativity” (Jordanous 2011), our contribution to the field of
computational creativity includes:
• Variety, divergence, and experimentation

• Originality

• Value

• Creation of Results

• Domain competence

Our system is capable of generating interesting and new
combinations of pieces of existing Pokemon using a novel
scheme for creating a sampling pool from which the nearest
Pokemon to the users’ inputs are drawn. While the assets
that we use to create our Pokemon are not original, the re-
sulting combinations of them are. Additionally, due to our
non-deterministic method of sampling egg groups for Poke-
mon parts, our generated results have a high degree of vari-
ety. We believe that all of these aspects provide value to the
field of computational creativity.

Despite all of the features we were able to include in our
system, there are many things that we would like to put forth
as future work that could be done to improve it. First is a
larger and improved dataset. We opted to only include the
first three generations of Pokemon due to time constraints
and due to the fact that, after the third generation, the Poke-
mon’s sprites began to be higher resolution, which we felt
did not lend itself as well to our idea of isolating and past-
ing together body parts. A larger dataset could be obtained
by waiving this second concern, or potentially by program-
matically scaling down higher resolution Pokemon sprites to
match the resolution of the sprites we used (64x64 pixels),
at the cost of some detail. Including a larger dataset would
increase the variety of generated Pokemon by increasing the
pool from which Pokemon parts are selected. It would also
allow us to increase the number of Pokemon body shapes
we include in our system, which is the second future addi-
tion we would like to see implemented. With the addition
of more Pokemon, the total number of Pokemon for each of
the 14 body shapes would also increase, meaning finding a
Pokemon sprite whose body would lend itself well to having
Pokemon parts pasted onto it would be more likely.

Beyond our dataset, we would also like to see additional
features added to our system. One such feature is the po-



tential for deviations away from our pre-programmed tem-
plates. Currently, our system only allows for the body parts
that it has been programmed to seek out, and only permits
the number of them that the corresponding Pokemon shape
has. For example, a quadruped can only have four legs, and
cannot have wings. We think that a system that could adjust
these parameters in an organic way would yield interesting
results, such as upright Pokemon with multiple heads, or a
quadruped with wings. These combinations are currently
not possible with our system, and we think that a less rigid
formula for generating Pokemon would allow for a higher
degree of variety among generated results.

Another area for potential improvement could be to do
away with using pieces of existing Pokemon. One aspect
of our system that could be considered a weakness is that
all of the Pokemon that the system generates are made from
pieces of existing Pokemon. This has the advantage of stay-
ing in the domain of Pokemon that already exist, but pre-
vents the creation of completely novel Pokemon. The ability
for the system to generate Pokemon that conform to the do-
main of existing Pokemon while generating new ones would
be valuable, but difficult to implement, and would require a
completely different strategy than what we used.

Aside from improvements to our system, future additions
could include features such as name and description gen-
eration for the generated Pokemon using natural language
processing (NLP). Adding this would increase the system’s
domain competence, making the Pokemon generated by the
system feel more organic when compared to the Pokemon in
our dataset.

Conclusion
We have created a system that is capable of procedurally
generating novel and cohesive Pokemon using a nearest
neighbor algorithm and pieces of existing Pokemon. We
believe that our system demonstrates a novel method of ac-
complishing procedural generation and provides an interest-
ing scheme for finding nearest neighbors to the users’ in-
puts. Further improvements could be made to the underly-
ing dataset that is used for constructing the Pokemon, but our
system in its current state represents an interesting and valu-
able contribution to the field of computational creativity by
demonstrating variety in the generation of novel Pokemon
and value in these works. Our survey showed that our gen-
erated Pokemon, with optimal conditions, can be considered
to be competent in their domain.

References
Berlyne, D. E. 1973. Aesthetics and psychobiology. Journal
of Aesthetics and Art Criticism 31(4):553–553.
Bulbapedia contributors. 2022a. Stat — Bulbapedia, the
community-driven pokémon encyclopedia. [Online; ac-
cessed 18-April-2022].
Bulbapedia contributors. 2022b. Type — Bulbapedia, the
community-driven pokémon encyclopedia. [Online; ac-
cessed 18-April-2022].
Bulbapedia contributors. 2022c. Type — Bulbapedia, the
community-driven pokémon encyclopedia. [Online; ac-
cessed 18-April-2022].
Bulbapedia contributors. 2022d. Type — Bulbapedia, the
community-driven pokémon encyclopedia. [Online; ac-
cessed 18-April-2022].
Bulbapedia contributors. 2022e. Type — Bulbapedia, the
community-driven pokémon encyclopedia. [Online; ac-
cessed 18-April-2022].
Jordanous, A. 2011. Evaluating evaluation: Assessing
progress in computational creativity research. Proceedings
of the 2nd International Conference on Computational Cre-
ativity, ICCC 2011.
Wikipedia contributors. 2022. List of games using procedu-
ral generation — Wikipedia, the free encyclopedia. [Online;
accessed 16-April-2022].


